บทที่ 4

ผลการวิจัย

ผลการศึกษา และวิเคราะห์ข้อมูลการเปลี่ยนแปลงสี ความใส และการเปลี่ยนแปลงคุณสมบัติ ทางกายภาพของกรีนทัวร์มาลีนจากแหล่งโมซัมบิก โดยใช้เครื่องมือต่างๆมีผลดังนี้

4.1 ผลการวิเคราะห์ โดยใช้เครื่องชั่งความถ่วงจำเพาะ (specific gravity balance) เพื่อหาค่าความถ่วงจำเพาะ

จากการเก็บข้อมูลตัวอย่างของทัวร์มาลีนสีเขียวจากแหล่งโมซัมบิก จำนวน 27 ตัวอย่าง ด้วยเครื่องชั่งความถ่วงจำเพาะ ก่อนและหลังการเผา ได้ผลตามตารางที่ 4.1 และ 4.2 ตามลำดับ

ชื่อตัวอย่าง	น้ำหนักที่ชั่งในอากาศ	น้ำหนักที่ชั่งในน้ำ	ค่าความถ่วงจำเพาะ
T350/6_01	1.938	1.305	3.06
T350/6_02	0.999	0.673	3.06
T350/6_03	1.715	1.148	3.02
T350/12_01	2.127	1.430	3.05
T350/12_02	1.456	0.983	3.07
T350/12_03	1.192	0.804	3.07
T350/18_01	1.311	0.880	3.04
T350/18_02	1.485	0.999	3.00
T350/18_03	2.120	1.430	3.07
T400/6_01	1.828	1.225	3.03
T400/6_02	1.216	0.810	2.99
T400/6_03	0.922	0.622	3.07
T400/12_01	1.504	1.013	3.06
T400/12_02	0.999	0.672	3.05
T400/12_03	1.101	0.740	3.04

ตารางที่ 4.1 แสดงค่าความถ่วงจำเพาะของตัวอย่างทัวร์มาลีน จากแหล่งโมซัมบิกก่อนเผา

ตารางที่ 4.1 (ต่อ)

ชื่อตัวอย่าง	น้ำหนักที่ชั่งในอากาศ	น้ำหนักที่ชั่งในน้ำ	ค่าความถ่วงจำเพาะ
T400/18_01	1.758	1.182	3.05
T400/18_02	1.301	0.868	3.00
T400/18_03	1.510	1.007	3.00
T450/6_01	1.366	0.911	3.00
T450/6_02	1.308	0.884	3.08
T450/6_03	2.019	1.356	3.04
T450/12_01	1.897	1.284	3.09
T450/12_02	1.322	0.880	2.99
T450/12_03	0.751	0.502	3.01
T450/18_01	1.942	1.295	3.00
T450/18_02	2.228	1.494	3.03
T450/18_03	0.954	0.642	3.05

ตารางที่ 4.2 แสดงค่าความถ่วงจำเพาะของตัวอย่างทัวร์มาลีน จากแหล่งโมซัมบิกหลังเผา

ชื่อตัวอย่าง	น้ำหนักที่ชั่งในอากาศ	น้ำหนักที่ชั่งในน้ำ	ค่าความถ่วงจำเพาะ
T350/6_01	1.940	1.305	3.05
T350/6_02	0.997	0.671	3.05
T350/6_03	1.712	1.160	3.10
T350/12_01	2.127	1.430	3.05
T350/12_02	1.456	0.983	3.07
T350/12_03	1.192	0.804	3.07
T350/18_01	1.309	0.879	STU 3.04
T350/18_02	1.480	0.998	3.07
T350/18_03	2.119	1.426	3.05
T400/6_01	1.827	1.233	3.07
T400/6_02	1.215	0.823	3.09
T400/6_03	0.922	0.623	3.08

ตารางที่ 4.2 (ต่อ)

ชื่อตัวอย่าง	น้ำหนักที่ชั่งในอากาศ	น้ำหนักที่ชั่งในน้ำ	ค่าความถ่วงจำเพาะ
T400/12_01	1.467	0.991	3.08
T400/12_02	0.999	0.676	3.09
T400/12_03	1.101	0.745	3.09
T400/18_01	1.757	1.180	3.04
T400/18_02	1.300	0.877	3.07
T400/18_03	1.510	1.014	3.04
T450/6_01	1.364	0.918	3.05
T450/6_02	1.312	0.881	3.05
T450/6_03	2.018	1.356	3.04
T450/12_01	1.896	1.276	3.05
T450/12_02	1.321	0.888	3.05
T450/12_03	0.750	0.503	3.03
T450/18_01	1.942	1.307	3.05
T450/18_02	2.228	1.493	3.03
T450/18_03	0.953	0.641	3.05

4.2 ผลการวิเคราะห์ โดยใช้เครื่องโพลาไรสโคป (polariscope) เพื่อหาลักษณะทาง แสง

จากการเก็บข้อมูลตัวอย่างของทัวร์มาลีนสีเขียวจากแหล่งโมซัมบิก จำนวน 27 ตัวอย่าง ด้วย เครื่องโพลาไรสโคป ก่อนและหลังการเผา ได้ผลตามตารางที่ 4.3 และ 4.4 ตามลำดับ

ตารางที่ 4.3 แสดงค่าลักษณะทางแสงของตัวอย่างทัวร์มาลีนจากแหล่งโมซัมบิกก่อนเผา

ชื่อตัวอย่าง	ผลการทดลอง	ลักษณะทางแสง
T350/6_01	มืด-สว่าง	หักเหคู่
T350/6_02	มืด-สว่าง	หักเหคู่
T350/6_03	มืด-สว่าง	หักเหคู่
T350/12_01	มืด-สว่าง	หักเหคู่

ตารางที่ 4.3 (ต่อ)

ชื่อตัวอย่าง	ผลการทดลอง	ลักษณะทางแสง
T350/12_02	มืด-สว่าง	หักเหคู่
T350/12_03	มืด-สว่าง	หักเหคู่
T350/18_01	มืด-สว่าง	หักเหคู่
T350/18_02	มืด-สว่าง	หักเหคู่
T350/18_03	มืด-สว่าง	หักเหคู่
T400/6_01	มืด-สว่าง	หักเหคู่
T400/6_02	มืด-สว่าง	หักเหคู่
T400/6_03	มืด-สว่าง	หักเหคู่
T400/12_01	มืด-สว่าง	หักเหคู่
T400/12_02	มืด-สว่าง	หักเหคู่
T400/12_03	มืด-สว่าง	หักเหคู่
T400/18_01	มืด-สว่าง	หักเหคู่
T400/18_02	มืด-สว่าง	หักเหคู่
T400/18_03	มืด-สว่าง	หักเหคู่
T450/6_01	มืด-สว่าง	หักเหคู่
T450/6_02	มืด-สว่าง	หักเหคู่
T450/6_03	มืด-สว่าง	หักเหคู่
T450/12_01	มืด-สว่าง	หักเหคู่
T450/12_02	มืด-สว่าง	หักเหคู่
T450/12_03	มืด-สว่าง	หักเหคู่
T450/18_01	มืด-สว่าง	หักเหคู่
T450/18_02	มืด-สว่าง	หักเหคู่
T450/18_03	มืด-สว่าง	หักเหคู่

ตารางที่ 4.4 แสดงค่าลักษณะทางแสงของตัวอย่างทัวร์มาลีนจากแหล่งโมซัมบิกหลังเผา

ชื่อตัวอย่าง	ผลการทดลอง	ลักษณะทางแสง
T350/6_01	มืด-สว่าง	หักเหคู่
T350/6_02	มืด-สว่าง	หักเหคู่
T350/6_03	มืด-สว่าง	หักเหคู่

ตารางที่ 4.4 (ต่อ)

ชื่อตัวอย่าง	ผลการทดลอง	ลักษณะทางแสง
T350/12_01	มืด-สว่าง	หักเหคู่
T350/12_02	มืด-สว่าง	หักเหคู่
T350/12_03	มืด-สว่าง	หักเหคู่
T350/18_01	มืด-สว่าง	หักเหคู่
T350/18_02	มืด-สว่าง	หักเหคู่
T350/18_03	มืด-สว่าง	หักเหคู่
T400/6_01	มืด-สว่าง	หักเหคู่
T400/6_02	มืด-สว่าง	หักเหคู่
T400/6_03	มืด-สว่าง	หักเหคู่
T400/12_01	มืด-สว่าง	หักเหคู่
T400/12_02	มืด-สว่าง	หักเหคู่
T400/12_03	มืด-สว่าง	หักเหคู่
T400/18_01	มืด-สว่าง	หักเหคู่
T400/18_02	มืด-สว่าง	หักเหคู่
T400/18_03	มืด-สว่าง	หักเหคู่
T450/6_01	มืด-สว่าง	หักเหคู่
T450/6_02	มืด-สว่าง	หักเหคู่
T450/6_03	มืด-สว่าง	หักเหคู่
T450/12_01	มืด-สว่าง	หักเหคู่
T450/12_02	มืด-สว่าง	หักเหคู่
T450/12_03	มืด-สว่าง	หักเหคู่
T450/18_01	มืด-สว่าง	หักเหคู่
T450/18_02	มืด-สว่าง	หักเหคู่
T450/18_03	มืด-สว่าง	หักเหคู่

ลิขสิทธิ์ของมหาวิทยาลัยราชภัฏรำไพพรรณี

4.3 ผลการวิเคราะห์ โดยใช้เครื่องรีแฟรกโตมิเตอร์ (refractometer) เพื่อหาค่าดัชนี หักเหของแสง

จากการเก็บข้อมูลตัวอย่างของทัวร์มาลีนสีเขียวจากแหล่งโมซัมบิก จำนวน 27 ตัวอย่าง ด้วย เครื่องรีแฟรกโตมิเตอร์ ก่อนและหลังการเผา ได้ผลตามตารางที่ 4.5 และ 4.5 ตามลำดับ

ชื่อตัวอย่าง	ηε	nω	birefringence
T350/6_01	1.625	1.642	0.017
T350/6_02	1.622	1.641	0.019
T350/6_03	1.622	1.642	0.020
T350/12_01	1.620	1.640	0.020
T350/12_02	1.620	1.640	0.020
T350/12_03	1.624	1.642	0.018
T350/18_01	1.624	1.644	0.020
T350/18_02	1.621	1.642	0.021
T350/18_03	1.620	1.640	0.020
T400/6_01	1.622	1.641	0.019
T400/6_02	1.621	1.641	0.020
T400/6_03	1.624	1.642	0.018
T400/12_01	1.630	1.643	0.013
T400/12_02	1.621	1.640	0.019
T400/12_03	1.622	1.641	0.019
T400/18_01	1.622	1.642	0.020
T400/18_02	1.628	1.642	0.014
T400/18_03	1.629	1.644	SNI 0.015
T450/6_01	1.620	1.640	0.020
T450/6_02	1.623	1.640	0.017
T450/6_03	1.624	1.643	0.019
T450/12_01	1.629	1.642	0.013
T450/12_02	1.621	1.640	0.019

ตารางที่ 4.5 แสดงค่าดัชนีหักเหของแสงของตัวอย่างทัวร์มาลีนจากแหล่งโมซัมบิกก่อนเผา

ตารางที่ 4.5 (ต่อ)

ชื่อตัวอย่าง	nε	nω	birefringence
T450/12_03	1.630	1.640	0.010
T450/18_01	1.622	1.644	0.020
T450/18_02	1.624	1.640	0.016
T450/18_03	1.623	1.640	0.017

ตารางที่ 4.6 แสดงค่าดัชนีหักเหของแสงของตัวอย่างทัวร์มาลีน จากแหล่งโมซัมบิกหลังเผา 12

Ν.

ชื่อตัวอย่าง	nε	nω	birefringence
T350/6_01	1.621	1.639	0.018
T350/6_02	1.624	1.641	0.017
T350/6_03	1.622	1.642	0.020
T350/12_01	1.620	1.640	0.020
T350/12_02	1.620	1.640	0.020
T350/12_03	1.624	1.642	0.018
T350/18_01	1.621	1.644	0.023
T350/18_02	1.621	1.640	0.019
T350/18_03	1.624	1.640	0.016
T400/6_01	1.628	1.640	0.012
T400/6_02	1.620	1.640	0.020
T400/6_03	1.621	1.641	0.020
T400/12_01	1.622	1.644	0.022
T400/12_02	1.624	1.640	0.016
T400/12_03	1.620	1.640	0.020
T400/18_01	1.622	1.642	0.020
T400/18_02	1.624	1.641	0.017
T400/18_03	1.628	1.642	0.014
T450/6_01	1.624	1.641	0.017
T450/6_02	1.624	1.641	0.017

nε	nω	birefringence
1.621	1.642	0.021
1.626	1.641	0.015
1.620	1.640	0.020
1.624	1.640	0.016
1.620	1.640	0.020
1.621	1.640	0.019
1.621	1.641	0.020
	nε 1.621 1.626 1.620 1.624 1.620 1.621 1.621	n_{E} n_{W} 1.6211.6421.6261.6411.6201.6401.6241.6401.6201.6401.6211.640

ตารางที่ 4.6 แสดงค่าดัชนีหักเหของแสงของตัวอย่างทัวร์มาลีน จากแหล่งโมซัมบิกหลังเผา

4.4 ผลการวิเคราะห์ โดยใช้กล้องจุลทรรศน์วิเคราะห์อัญมณี (gemmological microscope)

จากการเก็บข้อมูลตัวอย่างของทัวร์มาลื่นสีเขียวจากแหล่งโมซัมบิก จำนวน 27 ตัวอย่าง ด้วย กล้องจุลทรรศน์วิเคราะห์อัญมณี ก่อนและหลังการเผา ได้ผลดังนี้

ภาพที่ 4.1 แสดงมลทินรอยแตก (fracture) ของตัวอย่างที่ 350/6_01

ภาพที่ 4.2 แสดงมลทินผลึกแร่อื่น (crystal inclusion) ของตัวอย่างที่ 350/6_02

ภาพที่ 4.3 แสดงมลทินรอยแตก (fracture) ของตัวอย่างที่ 350/6_03

ภาพที่ 4.4 แสดงมลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 350/12_01

ภาพที่ 4.5 แสดงมลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 350/12_02

ภาพที่ 4.6 แสดงมลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 350/12_03

ภาพที่ 4.7 แสดงมลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 350/18_01

ภาพที่ 4.8 แสดงมลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 350/18_02

ภาพที่ 4.9 แสดงมลทินคล้ายกลุ่มหมอก (cloud inclusion) ของตัวอย่างที่ 350/18_03

ภาพที่ 4.10 แสดงมลทินเชื่อมประสานรอยแตก (heal fracture inclusion) ของตัวอย่างที่ 400/6_01

ภาพที่ 4.11 แสดงมลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 400/6_02

ภาพที่ 4.12 แสดงมลทินผลึกแร่อื่น (crystal inclusion) ของตัวอย่างที่ 400/6_03

ภาพที่ 4.13 แสดงมลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 400/12_01

ภาพที่ 4.14 แสดงมลทินรอยแตก (fracture inclusion) ของตัวอย่างที่ 400/12_02

ภาพที่ 4.15 แสดงมลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 400/12_03

ภาพที่ 4.16 แสดงมลทินผลึกแร่สีดำ (black mineral inclusion) ของตัวอย่างที่ 400/18_01

ภาพที่ 4.17 แสดงมลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 400/18_02

ภาพที่ 4.18 แสดงมลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 400/18_03

ภาพที่ 4.19 แสดงมลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 450/6_01

ภาพที่ 4.20 แสดงมลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 450/6_02

ภาพที่ 4.21 แสดงมลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 450/6_03

ภาพที่ 4.22 แสดงมลทินผลึกแร่สีดำ (black mineral inclusion) ของตัวอย่างที่ 450/12_01

ภาพที่ 4.23 แสดงมลทินรอยแตก (fracture inclusion) ของตัวอย่างที่ 450/12_02

ภาพที่ 4.24 แสดงมลทินคล้ายกลุ่มหมอก (cloud inclusion) ของตัวอย่างที่ 450/12_02

ภาพที่ 4.25 แสดงมลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 450/18_01

ภาพที่ 4.26 แสดงมลทินคล้ายกลุ่มหมอก (cloud inclusion) ของตัวอย่างที่ 450/18_02

ภาพที่ 4.27 แสดงมลทินรอยแตก (fracture inclusion) ของตัวอย่างที่ 450/18_03

ตัวอย่างทัวร์มาลีนจากแหล่งโมซัมบิกก่อนเผา ลักษณะมลทินที่พบได้แก่

- ลักษณะรอยแตก (fracture)
- ลักษณะแร่สีดำ (black mineral inclustion)
- ลักษณะคล้ายกลุ่มหมอก (cloud inclusion)
- ลักษณะรอยแตกเชื่อมประสาน (heal fracture)

ลิขสิทธิของมหาวิทยาลัยราชภัฏร่าไพพรรณี

ผลการวิเคราะห์ตำหนิภายในของทัวร์มาลีนจากแหล่งโมซัมบิก หลังเผามีดังนี้

ภาพที่ 4.28 แสดงมลทินรอยแตก (fracture inclusion) ของตัวอย่างที่ 350/6_01

ภาพที่ 4.29 แสดงมลทินผลึกแร่ (mineral inclusion) ของตัวอย่างที่ 350/6_02

ภาพที่ 4.30 แสดงมลทินรอยแตก (fracture inclusion) ของตัวอย่างที่ 350/6_03

ภาพที่ 4.31 แสดงมลทินผลึกแร่ (mineral inclusion) ของตัวอย่างที่ 350/12_01

ภาพที่ 4.32 แสดงมลทินผลึกแร่ (mineral inclusion) ของตัวอย่างที่ 350/12_02

ภาพที่ 4.33 แสดงมลทินผลึกแร่ (mineral inclusion) ของตัวอย่างที่ 350/12_03

ภาพที่ 4.34 แสดงมลทินผลึกแร่ (mineral inclusion) ของตัวอย่างที่ 350/18_01

ภาพที่ 4.35 แสดงมลทินผลึกแร่ (mineral inclusion) ของตัวอย่างที่ 350/18_02

ภาพที่ 4.36 มลทินคล้ายกลุ่มหมอก (mineral inclusion) ของตัวอย่างที่ 350/18_03

ภาพที่ 4.37 มลทินเชื่อมประสานรอยแตก (heal fracture inclusion) ของตัวอย่างที่ 400/6_01

ภาพที่ 4.38 มลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 400/6_02

ภาพที่ 4.39 มลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 400/6_03

ภาพที่ 4.40 มลทินรอยแตก (fracture inclusion) ของตัวอย่างที่ 400/12_01

ภาพที่ 4.41 มลทินรอยแตก (fracture inclusion) ของตัวอย่างที่ 400/12_02

ภาพที่ 4.42 มลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 400/12_03

ภาพที่ 4.43 มลทินรอยแตก (fracture inclusion) ของตัวอย่างที่ 400/18_01

ภาพที่ 4.45 มลทินรอยแตก (fracture inclusion) ของตัวอย่างที่ 400/18_03

ภาพที่ 4.46 มลทินรอยแตก (fracture inclusion) ของตัวอย่างที่ 450/6_01

ภาพที่ 4.47 มลทินรอยแตก (fracture inclusion) ของตัวอย่างที่ 450/6_02

ภาพที่ 4.48 มลทินแร่สีดำ (black mineral inclusion) ของตัวอย่างที่ 450/6_03

ภาพที่ 4.49 มลทินผลึกแร่ (crystal inclusion) ของตัวอย่างที่ 450/12_01

ภาพที่ 4.50 มลทินรอยแตก (fracture inclusion) ของตัวอย่างที่ 450/12_02

ภาพที่ 4.51 มลทินรอยแตกเชื่อมประสาน (heal fracture inclusion) ของตัวอย่างที่ 450/12_03

ภาพที่ 4.52 มลทินผลึกแร่ (mineral inclusion) ของตัวอย่างที่ 450/18_01

ภาพที่ 4.53 มลทินรอยแตก (fracture inclusion) ของตัวอย่างที่ 450/18_02

ภาพที่ 4.54 มลทินผลึกแร่ (fracture inclusion) ของตัวอย่างที่ 450/18_03

้ตัวอย่างทัวร์มาลีนจากแหล่งโมซัมบิกหลังเผา ลักษณะมลทินที่พบได้แก่

- มลทินรอยแตก (fracture) ที่เพิ่มขึ้นในบางตัวอย่าง
- มลทินคล้ายกลุ่มหมอก (cloud inclusion) จางลง
- มลทินแร่สีดำ (black mineral inclustion) หายไปในบางตัวอย่าง
- มลทินผลึกแร่ (crystal inclusion) ยังคงอยู่

4.5 ผลการวิเคราะห์จากเครื่อง ยูวี-วิส-เอ็นไออาร์ สเปกโทรโฟโตมิเตอร์ (UV-VIS-NIR Spectrophotometer) ก่อน และหลังเผา

สเปกตรัมของกรีนทัวร์มาลีนจากแหล่งโมซัมบิก แสดงแถบการดูดกลืนแสงที่ตำแหน่ง ประมาณ 360 และ 415 นาโนเมตร สัมพันธ์กับการดูดกลืนแสงของ Mn²⁺ ซึ่งให้สีเหลือง และการ ดูดกลืนที่ตำแหน่ง 600-700 นาโนเมตร สัมพันธ์กับการดูดกลืนแสงของ Fe²⁺ ซึ่งเป็นธาตุให้สีเขียว

ภาพที่ 4.55 แสดงกราฟจากเครื่อง ยูวี-วิส-เอ็นไออาร์ สเปกโทรโฟโตมิเตอร์ ของตัวอย่างที่ T350/6_01 ก่อนและหลังเผา

ผลการวิเคราะห์พบว่า ตัวอย่างที่ T350/6_01 แสดงแถบการดูดกลืนที่ตำแหน่ง 415 นาโน เมตร พบว่า Mn²⁺ เพิ่มขึ้นเล็กน้อยทำให้มีสีเหลืองเพิ่มขึ้นเล็กน้อย และการดูดกลืนที่ตำแหน่ง 600-700 นาโนเมตร พบว่า Fe²⁺ เพิ่มขึ้นเล็กน้อยทำให้สีเขียวเพิ่มขึ้นเล็กน้อย

ภาพที่ 4.56 แสดงกราฟจากเครื่อง ยูวี-วิส-เอ็นไออาร์ สเปกโทรโฟโตมิเตอร์ ของตัวอย่างที่

 \odot

T350/12_01 ก่อนและหลังเผา

ผลการวิเคราะห์พบว่า ตัวอย่างที่ T350/12_01 แสดงแถบการดูดกลืนที่ตำแหน่ง 415 นา โนเมตร พบว่า Mn²⁺ เพิ่มขึ้นทำให้มีสีเหลืองเพิ่มขึ้น และการดูดกลืนที่ตำแหน่ง 600-700 นาโนเมตร พบว่า Fe²⁺ เพิ่มขึ้นทำให้สีเขียวเพิ่มขึ้น

ภาพที่ 4.57 แสดงกราฟจากเครื่อง ยูวี-วิส-เอ็นไออาร์ สเปกโทรโฟโตมิเตอร์ของตัวอย่างที่ T350/18_01 ก่อนและหลังเผา

ผลการวิเคราะห์พบว่า ตัวอย่างที่ T350/18_01 แสดงแถบการดูดกลืนที่ตำแหน่ง 360 และ 415 นาโนเมตร พบว่า Mn²⁺ เพิ่มขึ้นชัดเจนทำให้มีสีเหลืองเพิ่มขึ้น และการดูดกลืนที่ตำแหน่ง 600-700 นาโนเมตร พบว่า Fe²⁺ เพิ่มขึ้นชัดเจนทำให้สีเขียวเพิ่มขึ้น

ภาพที่ 4.58 แสดงกราฟจากเครื่อง ยูวี-วิส-เอ็นไออาร์ สเปกโทรโฟโตมิเตอร์ ของตัวอย่างที่ T400/6_01 ก่อนและหลังเผา

ผลการวิเคราะห์พบว่า ตัวอย่างที่ T 400/6_01 แสดงการดูดกลืนแสงที่แทบไม่มีการ เปลี่ยนแปลง

ภาพที่ 4.59 แสดงกราฟจากเครื่อง ยูวี-วิส-เอ็นไออาร์ สเปกโทรโฟโตมิเตอร์ ของตัวอย่างที่ T400/12_01 ก่อนและหลังเผา

ผลการวิเคราะห์พบว่า ตัวอย่างที่ T400/12_01 แสดงการดูดกลืนแสงที่แทบไม่มีการ เปลี่ยนแปลง

ภาพที่ 4.60 แสดงกราฟจากเครื่อง ยูวี-วิส-เอ็นไออาร์ สเปกโทรโฟโตมิเตอร์ ของตัวอย่างที่ T400/18_01 ก่อนและหลังเผา

ผลการวิเคราะห์พบว่า ตัวอย่างที่ T400/18_01 แสดงแถบการดูดกลืนที่ตำแหน่ง 360 และ 415 นาโนเมตร พบว่า Mn²⁺ เพิ่มขึ้นทำให้มีสีเหลืองเพิ่มขึ้น และการดูดกลืนที่ตำแหน่ง 600-700 นาโนเมตร พบว่า Fe²⁺ เพิ่มขึ้นเล็กน้อยทำให้สีเขียวเพิ่มขึ้นเล็กน้อย

ภาพที่ 4.61 แสดงกราฟจากเครื่อง ยูวี-วิส-เอ็นไออาร์ สเปกโทรโฟโตมิเตอร์ ของตัวอย่างที่ T450/6_01 ก่อนและหลังเผา

ผลการวิเคราะห์พบว่า ตัวอย่างที่ T450/6_01 แสดงแถบการดูดกลืนที่ตำแหน่ง 415 นา โนเมตร พบว่า Mn²⁺ เพิ่มขึ้นเล็กน้อยทำให้มีสีเหลืองเพิ่มขึ้นเล็กน้อย และการดูดกลืนที่ตำแหน่ง 600-700 นาโนเมตร พบว่า Fe²⁺ เพิ่มขึ้นเล็กน้อยทำให้สีเขียวเพิ่มขึ้นเล็กน้อย

ภาพที่ 4.62 แสดงกราฟจากเครื่อง ยูวี-วิส-เอ็นไออาร์ สเปกโทรโฟโตมิเตอร์ ของตัวอย่างที่ T450/12_01 ก่อนและหลังเผา

ผลการวิเคราะห์พบว่า ตัวอย่างที่ T450/12_01 แสดงแถบการดูดกลืนที่ตำแหน่ง 360 และ415 นาโนเมตร พบว่า Mn²⁺ เพิ่มขึ้นชัดเจนทำให้มีสีเหลืองเพิ่มขึ้น และการดูดกลืนที่ตำแหน่ง 600-700 นาโนเมตร พบว่า Fe²⁺ เพิ่มขึ้นทำให้สีเขียวเพิ่มขึ้น

ภาพที่ 4.63 แสดงกราฟจากเครื่อง ยูวี-วิส-เอ็นไออาร์ สเปกโทรโฟโตมิเตอร์ ของตัวอย่างที่ T450/18_01 ก่อนและหลังเผา

ผลการวิเคราะห์พบว่า ตัวอย่างที่ T450/18_01 แสดงแถบการดูดกลืนที่ตำแหน่ง 415 นา โนเมตร พบว่า Mn²⁺ ลดลงเล็กน้อยทำให้มีสีเหลืองลดลงเล็กน้อย และการดูดกลืนที่ตำแหน่ง 600 -700 นาโนเมตร พบว่า Fe²⁺ ลดลงทำให้สีเขียวลดลง

4.6 ผลการเปรียบเทียบสีของพลอยทัวร์มาลีนจากแหล่งโมซัมบิก ก่อนและหลังเผา

กลุ่มที่ 1 ใช้อุณหภูมิ 350 °C ยืนเวลาที่ 6 ชั่วโมง

ตารางที่ 4.7 แสดงการเปรียบเทียบสีของกลุ่มที่ 1 ก่อนและหลังเผา

T350/6_01		T350/6_02		T350/6_03	
ก่อนเผา	หลังเผา	ก่อนเผา หลังเผา		ก่อนเผา	หลังเผา

จากการเปรียบเทียบภาพถ่ายตัวอย่างก่อนเผาและหลังของกลุ่มที่ 1 ซึ่งใช้อุณหภูมิ 350 ℃ ยืนเวลาในการเผา 6 ชั่วโมง พบว่าทุกตัวอย่างมีความใสสว่างขึ้นเล็กน้อย

กลุ่มที่ 2 ใช้อุณหภูมิ 350 °C ยืนเวลาที่ 12 ชั่วโมง

ตารางที่ 4.8 แสดงการเปรียบเทียบสีของกลุ่มที่ 2 ก่อนและหลังเผา

T350/12_01		T350/12_02		T350/12_03	
ก่อนเผา	หลังเผา	ก่อนเผา	หลังเผา	ก่อนเผา	หลังเผา

จากการเปรียบเทียบภาพถ่ายตัวอย่างก่อนเผาและหลังของกลุ่มที่ 2 ซึ่งใช้อุณหภูมิ 350 ℃ ยืนเวลาในการเผา 12 ชั่วโมง พบว่าทุกตัวอย่างไม่เปลี่ยนแปลง กลุ่มที่ 3 ใช้อุณหภูมิ 350 °C ยืนเวลาที่ 18 ชั่วโมง

T350/18_01		T350/18_02		T350/18_03	
ก่อนเผา	หลังเผา	ก่อนเผา หลังเผา		ก่อนเผา	หลังเผา

ตารางที่ 4.9 แสดงการเปรียบเทียบสีของกลุ่มที่ 3 ก่อนและหลังเผา

จากการเปรียบเทียบภาพถ่ายตัวอย่างก่อนเผาและหลังของกลุ่มที่ 3 ซึ่งใช้อุณหภูมิ 350 ℃ ยืนเวลาในการเผา 18 ชั่วโมง พบว่าทุกตัวอย่างมีความใสสว่างขึ้นเล็กน้อยและมีสีอมเหลืองมากขึ้น

กลุ่มที่ 4 ใช้อุณหภูมิ 400 °C ยืนเวลาที่ 6 ชั่วโมง

ตารางที่ 4.10 แสดงการเปรียบเทียบสีของกลุ่มที่ 4 ก่อนและหลังเผา

T400/6_01		T400/6_02		T400/6_03	
ก่อนเผา	หลังเผา	ก่อนเผา	หลังเผา	ก่อนเผา	หลังเผา

จากการเปรียบเทียบภาพถ่ายตัวอย่างก่อนเผาและหลังของกลุ่มที่ 4 ซึ่งใช้อุณหภูมิ 400 °C ยืนเวลาในการเผา 6 ชั่วโมง พบว่ามีการเปลี่ยนแปลงน้อยมาก โดยมีบางตัวอย่างที่ใสขึ้นเล็กน้อย

กลุ่มที่ 5 ใช้อุณหภูมิ 400 °C ยืนเวลาที่ 12 ชั่วโมง

ตารางที่ 4.11 แสดงการเปรียบเทียบสีของกลุ่มที่ 5 ก่อนและหลังเผา

T400/12_01		T400/12_02		T400/12_03	
ก่อนเผา	หลังเผา	ก่อนเผา หลังเผา		ก่อนเผา	หลังเผา

จากการเปรียบเทียบภาพถ่ายตัวอย่างก่อนเผาและหลังของกลุ่มที่ 5 ซึ่งใช้อุณหภูมิ 400 °C ยืนเวลาในการเผา 12 ชั่วโมง พบว่ามีการเปลี่ยนแปลงน้อยมาก โดยมีบางตัวอย่างที่ใสขึ้นเล็กน้อย

กลุ่มที่ 6 ใช้อุณหภูมิ 400 °C ยืนเวลาที่ 18 ชั่วโมง

ตารางที่ 4.12 แสดงการเปรียบเทียบสีของกลุ่มที่ 6 ก่อนและหลังเผา

T400/18_01		T400/18_02		T400/18_03	
ก่อนเผา	หลังเผา	ก่อนเผา	หลังเผา	ก่อนเผา	หลังเผา

จากการเปรียบเทียบภาพถ่ายตัวอย่างก่อนเผาและหลังของกลุ่มที่ 6 ซึ่งใช้อุณหภูมิ 400 °C ยืนเวลาในการเผา 18 ชั่วโมง พบว่าทุกตัวอย่างใสขึ้นเล็กน้อย

กลุ่มที่ 7 ใช้อุณหภูมิ 450 °C ยืนเวลาที่ 6 ชั่วโมง

ตารางที่ 4.13 แสดงการเปรียบเทียบสีของกลุ่มที่ 7 ก่อนและหลังเผา

T450/6_01		T450/6_02		T450/6_03	
ก่อนเผา	หลังเผา	ก่อนเผา	หลังเผา	ก่อนเผา	หลังเผา

จากการเปรียบเทียบภาพถ่ายตัวอย่างก่อนเผาและหลังของกลุ่มที่ 7 ซึ่งใช้อุณหภูมิ 450 °C ยืนเวลาในการเผา 6 ชั่วโมง พบว่ามีการเปลี่ยนแปลงน้อยมาก โดยมีบางตัวอย่างที่ใสขึ้นเล็กน้อย กลุ่มที่ 8 ใช้อุณหภูมิ 450 °C ยืนเวลาที่ 12 ชั่วโมง

ตารางที่ 4.14 แสดงการเปรียบเทียบสีของกลุ่มที่ 8 ก่อนและหลังเผา

T450/12_01		T450/12_02		T450/12_03	
ก่อนเผา	หลังเผา	ก่อนเผา	หลังเผา	ก่อนเผา	หลังเผา

จากการเปรียบเทียบภาพถ่ายตัวอย่างก่อนเผาและหลังของกลุ่มที่ 8 ซึ่งใช้อุณหภูมิ 450 ℃ ยืนเวลาในการเผา 12 ชั่วโมง พบว่ามีการเปลี่ยนแปลงน้อยมาก โดยมีบางตัวอย่างที่ใสขึ้นเล็กน้อย และสีเหลืองขึ้นเล็กน้อย

```
กลุ่มที่ 9 ใช้อุณหภูมิ 450 °C ยืนเวลาที่ 18 ชั่วโมง
```

ตารางที่ 4.15 แสดงการเปรียบเทียบสีของกลุ่มที่ 9 ก่อนและหลังเผา

T450/18_01		T450/18_02		T450/18_03	
ก่อนเผา	หลังเผา	ก่อนเผา หลังเผา		ก่อนเผา	หลังเผา

จากการเปรียบเทียบภาพถ่ายตัวอย่างก่อนเผาและหลังของกลุ่มที่ 9 ซึ่งใช้อุณหภูมิ 450 °C ยืนเวลาในการเผา 18 ชั่วโมง พบว่ามีการเปลี่ยนแปลงน้อยมาก โดยมีบางตัวอย่างที่ใสขึ้นเล็กน้อย และสีเหลืองขึ้นเล็กน้อย

ลิขสิทธิของมหาวิทยาลัยราชภัฏรำไพพรรณี

4.7 ผลวิเคราะห์การเปลี่ยนสีของพลอยทัวร์มาลีนจากแหล่งโมซัมบิก ก่อนและหลังเผา ด้วยระบบสี CIE L*a*b*

ผลการวิเคราะห์สีของกรีนทัวร์มาลีนจากแหล่งโมซัมบิกก่อนและหลังเผาด้วยอุณหภูมิและ เวลาดังนี้ 350 °C ยืนเวลาที่ 6 ชั่วโมง, 350 °C ยืนเวลาที่ 12 ชั่วโมง, 350 °C ยืนเวลาที่ 18 ชั่วโมง, เวลา 400 °C ยืนเวลาที่ 6 ชั่วโมง, 400 °C ยืนเวลาที่ 12 ชั่วโมง, 400 °C ยืนเวลาที่ 18 ชั่วโมง, เวลา 450 °C ยืนเวลาที่ 6 ชั่วโมง, 450 °C ยืนเวลาที่ 12 ชั่วโมง และ 450 °C ยืนเวลาที่ 18 ชั่วโมง ด้วย ระบบสี CIE Lab โดยค่า L* แสดงค่าความสว่างตั้งแต่ 0-100 ยิ่งค่ามากยิ่งมีความสว่างมาก ค่า a* เป็นบวก แสดงความเป็นสีแดง a* เป็นลบ แสดงความเป็นสีเขียว และค่า b* เป็นบวก แสดงความ เป็นสีเหลือง b* เป็นลบ แสดงความเป็นสีน้ำเงิน

ภาพที่ 4.64 แสดงแผนภูมิแสดงค่า L* ก่อนและหลังเผา กลุ่ม 1 ใช้อุณหภูมิ 350 °C ยืนเวลาที่ 6 ชั่วโมง กลุ่ม 2 ใช้อุณหภูมิ 350 °C ยืนเวลาที่ 12 ชั่วโมง กลุ่ม 3 ใช้อุณหภูมิ 350 °C ยืนเวลาที่ 18 ชั่วโมง

ผลการวิเคราะห์ค่า L* ของพลอยทัวร์มาลีนจากแหล่งโมซัมบิก ก่อนและหลังเผา พบว่ากลุ่ม ที่ 1 ค่า L* ลดลงเล็กน้อย แสดงว่าว่าพลอยมีความสว่างลดลงเล็กน้อย ส่วนกลุ่มที่ 2 และ 3 พบว่าค่า L* ลดลงอย่างชัดเจนแสดงว่าความสว่างลดลง

ภาพที่ 4.65 แสดงแผนภูมิแสดงค่า L* ก่อนและหลังเผา กลุ่ม 4 ใช้อุณหภูมิ 400 °C ยืนเวลาที่ 6 ชั่วโมง กลุ่ม 5 ใช้อุณหภูมิ 400 °C ยืนเวลาที่ 12 ชั่วโมง กลุ่ม 6 ใช้อุณหภูมิ 400 °C ยืนเวลาที่ 18 ชั่วโมง ผลการวิเคราะห์ค่า L* ของพลอยทัวร์มาลีนจากแหล่งโมซัมบิก ก่อนและหลังเผา พบว่ากลุ่ม ที่ 4 ค่า L* ลดลงซัดเจน แสดงว่าพลอยมีความสว่างลดลง ส่วนกลุ่มที่ 5 พบว่าค่า L* เพิ่มขึ้นแสดงว่า ความสว่างเพิ่มขึ้น พบว่ากลุ่มที่ 6 ค่า L* ลดลงเล็กน้อย แสดงว่าพลอยมีความสว่างลดลงเล็กน้อย

ภาพที่ 4.66 แสดงแผนภูมิแสดงค่า L* ก่อนและหลังเผา กลุ่ม 7 ใช้อุณหภูมิ 450 °C ยืนเวลาที่ 6 ชั่วโมง กลุ่ม 8 ใช้อุณหภูมิ 450 °C ยืนเวลาที่ 12 ชั่วโมง กลุ่ม 9 ใช้อุณหภูมิ 450 °C ยืน เวลาที่ 18 ชั่วโมง

ผลการวิเคราะห์ค่า L* ของพลอยทัวร์มาลีนจากแหล่งโมซัมบิก ก่อนและหลังเผา พบว่ากลุ่ม ที่ 7 ค่า L* ลดลงชัดเจน แสดงว่าพลอยมีความสว่างลดลง ส่วนกลุ่มที่ 8 พบว่าค่า L* เพิ่มขึ้นแสดงว่า ความสว่างเพิ่มขึ้น พบว่ากลุ่มที่ 9 ค่า L* เพิ่มขึ้นแสดงว่าพลอยมีความสว่างเพิ่มขึ้น

ภาพที่ 4.67 แสดงแผนภูมิแสดงค่า a* ก่อนและหลังเผา กลุ่ม 1 ใช้อุณหภูมิ 350℃ ยืนเวลาที่ 6 ชั่วโมง กลุ่ม 2 ใช้อุณหภูมิ 350℃ ยืนเวลาที่ 12 ชั่วโมง กลุ่ม 3 ใช้อุณหภูมิ 350℃ ยืน เวลาที่ 18 ชั่วโมง ผลการวิเคราะห์ค่า a* ของพลอยทัวร์มาลีนจากแหล่งโมซัมบิก ก่อนและหลังเผา พบว่ากลุ่ม 1 มีค่า a* ลดลงเล็กน้อย แสดงว่าพลอยมีสีเขียวเพิ่มขึ้นเล็กน้อย แต่กลุ่ม 2 และ3 มีค่า a* เพิ่มขึ้น อย่างมาก แสดงว่าสีเขียวลดลง

ภาพที่ 4.68 แสดงแผนภูมิแสดงค่า ล* ก่อนและหลังเผา กลุ่ม 4 ใช้อุณหภูมิ 400°C ยืนเวลาที่ 6 ชั่วโมง กลุ่ม 5 ใช้อุณหภูมิ 400°C ยืนเวลาที่ 12 ชั่วโมง กลุ่ม 6 ใช้อุณหภูมิ 400°C ยืน เวลาที่ 18 ชั่วโมง

ผลการวิเคราะห์ค่า a* ของพลอยทัวร์มาลีนจากแหล่งโมซัมบิก ก่อนและหลังเผา พบว่ากลุ่ม 4 มีค่า a* เพิ่มขึ้น แสดงว่าพลอยมีสีเขียวลดลง แต่กลุ่ม 5 และ6 มีค่า a* ลดลง แสดงว่าสีเขียว เพิ่มขึ้น

ภาพที่ 4.69 แสดงแผนภูมิแสดงค่า a* ก่อนและหลังเผา กลุ่ม 7 ใช้อุณหภูมิ 450°C ยืนเวลาที่ 6 ชั่วโมง กลุ่ม 8 ใช้อุณหภูมิ 450°C ยืนเวลาที่ 12 ชั่วโมง กลุ่ม 9 ใช้อุณหภูมิ 450°C ยืน เวลาที่ 18 ชั่วโมง ผลการวิเคราะห์ค่า a* ของพลอยทัวร์มาลีนจากแหล่งโมซัมบิก ก่อนและหลังเผา พบว่ากลุ่ม 7 มีค่า a* เพิ่มขึ้น แสดงว่าพลอยมีสีเขียวลดลง แต่กลุ่ม 8 และ9 มีค่า a* ลดลง แสดงว่าสีเขียว เพิ่มขึ้น

ภาพที่ 4.70 แสดงแผนภูมิแสดงค่า b* ก่อนและหลังเผา กลุ่ม 1 ใช้อุณหภูมิ 350℃ ยืนเวลาที่ 6 ชั่วโมง กลุ่ม 2 ใช้อุณหภูมิ 350℃ ยืนเวลาที่ 12 ชั่วโมง กลุ่ม 3 ใช้อุณหภูมิ 350℃ ยืน เวลาที่ 18 ชั่วโมง

ผลการวิเคราะห์ค่า b* ของพลอยทัวร์มาลีนจากแหล่งโมซัมบิก ก่อนและหลังเผา พบว่ากลุ่ม 1 มีค่า b* เพิ่มขึ้น แสดงว่าพลอยมีสีเหลืองเพิ่มขึ้น แต่กลุ่ม 2 และ3 มีค่า b* ลดลง แสดงว่าสีเหลือง ลดลง

ภาพที่ 4.71 แสดงแผนภูมิแสดงค่า b* ก่อนและหลังเผา กลุ่ม 4 ใช้อุณหภูมิ 400°C ยืนเวลาที่ 6 ชั่วโมง กลุ่ม 5 ใช้อุณหภูมิ 400°C ยืนเวลาที่ 12 ชั่วโมง กลุ่ม 6 ใช้อุณหภูมิ 400°C ยืน เวลาที่ 18 ชั่วโมง ผลการวิเคราะห์ค่า b* ของพลอยทัวร์มาลีนจากแหล่งโมซัมบิก ก่อนและหลังเผา พบว่ากลุ่ม 4 มีค่า b* ลดลง แสดงว่าพลอยมีสีเหลืองลดลง แต่กลุ่ม 5 และ6 มีค่า b* เพิ่มขึ้น แสดงว่าสีเหลือง เพิ่มขึ้น

ภาพที่ 4.72 แสดงแผนภูมิแสดงค่า b* ก่อนและหลังเผา กลุ่ม 7 ใช้อุณหภูมิ 450℃ ยืนเวลาที่ 6 ชั่วโมง กลุ่ม 8 ใช้อุณหภูมิ 450℃ ยืนเวลาที่ 12 ชั่วโมง กลุ่ม 9 ใช้อุณหภูมิ 450℃ ยืน เวลาที่ 18 ชั่วโมง

ผลการวิเคราะห์ค่า b* ของพลอยทัวร์มาลีนจากแหล่งโมซัมบิก ก่อนและหลังเผา พบว่ากลุ่ม 7 มีค่า b* ลดลง แสดงว่าพลอยมีสีเหลืองลดลง แต่กลุ่ม 8 และ9 มีค่า b* เพิ่มขึ้น แสดงว่าสีเหลือง เพิ่มขึ้น

ลิขสิทธิ์ของมหาวิทยาลัยราชภัฏรำไพพรรณี

PRI RAJABHA